The Bat! Common Plug-in Application Programming Interface (CP API)
Version:

1.0

Date:

10 Sep 2003

1. Abstract

Starting from version 2, The Bat! introduces possibility to expand its functionality by adding plug-in modules. This document describes the principles of how those modules are used and what functionality should/can be included in them.
2. Plug-in modules

A Plug-in module for The Bat! is a Win32 Dynamically Linked Library (DLL). The default file extension of general purpose Plug-in files is .TBP (TBP stands for The Bat! Plug-in).

Below is a set of functions that can be implemented in the Plug-in module (function names are case-sensitive):

TBP_Initialize

TBP_Finalize

TBP_GetName

TBP_GetVersion

TBP_GetStatus

TBP_GetInfo

TBP_NeedConfig

TBP_Setup

TBP_SetConfigData

TBP_GetConfigData

TBP_NeedCOM

TBP_GetSpamScore

TBP_FeedSpam

TBP_GetMacroList

TBP_ExecMacro

Minimum implementation level of a Plug-in includes the following functions:
TBP_GetName

TBP_GetStatus

3. Code conventions

3.1. Calling convention
All Plug-in functions must be implemented using standard Win32 API calling convention, which is defined as WINAPI in C and stdcall in Object Pascal

3.2. Thread safety

Any plug-in function can be called from different threads simultaneously, so all functions must be aware to multi-threaded model and provide appropriate level of protection of internal data. If a Plug-in author does not want to support full-blown multithreading, a simple workaround can be made by using critical sections (EnterCriticalSection at the start of a function and LeaveCriticalSection at the end, make sure the critical section is initialised at the DLL’s entry point or in the TBP_Initialize function and the code between EnterCriticalSection and LeaveCriticalSection is protected from exceptions)

3.3. Null-terminated strings

Unless it is explicitly specified, length of string buffers MUST NOT include the terminating null character and the terminating null character MUST NOT be added upon retrieval of any string data from Plug-ins.

3.4. “Buffer overrun” control

For safety sake, it is highly recommended not to use local array variables as buffers for retrieving data from objects provided by The Bat! Buffers passed to Plug-in functions are dynamically allocated, but it is still highly recommended to pay special attention to the “buffer overrun” problem so the program’s data stays safe.
4. Programming languages

Any programming language can be used for creation of Plug-in modules as long as they can be used for creation of a Win32 DLL module, support name, call and thread safety conventions provided in this document.

This document provides function definitions in C and Object Pascal

5. Functions

5.1. General purpose functions.
Functions described in this section are common for all types of plug-ins. They are used for retrieving general information about a plug-in and providing a proper way to initialise, finalise and configure the plug-in.

5.1.1. TBP_Initialize

Syntax:

 C++:

void WINAPI TBP_Initialize();
 Object Pascal:
procedure TBP_Initialize; stdcall;

Description:

This function is called upon initialization of the Plug-in. During The Bat! execution, it is called just once right after the Plug-in module is loaded. Use TBP_Initialize to initialize all internal data for proper functioning of the Plug-in.

Return values:

None. If an error occurs during a call to TBP_Initialize, and this error is critical to the Plug-in’s functionality, TBP_GetStatus must return an error code.

5.1.2. TBP_Finalize

Syntax:

 C++:

void WINAPI TBP_Finalize();
 Object Pascal:
procedure TBP_Finalize; stdcall;
Description:

This function is called once before the Plug-in is unloaded from memory. Use TBP_Finalize for cleaning up memory, temporary files, etc.

Return values:

None.
5.1.3. TBP_GetName

Syntax:

 C++:

int WINAPI TBP_GetName(char* ABuf, int ABufSize);
 Object Pascal:
function TBP_GetName(ABuf: PChar; ABufSize: Integer): Integer; stdcall;
Description:

This function is called in order to retrieve the name of the Plug-in.

Parameters:
ABuf

[out] Pointer to a string buffer that receives string specifying the name of the Plug-in. If ABuf is a null pointer, the function must return value is the required buffer size in bytes.

ABufSize

[in] Size of the string buffer identified by ABuf, in bytes. If the ABufSize is negative, the function must return value is the required buffer size in bytes.
Return values:

A positive value

the number of bytes written in the ABuf or the required buffer size

Zero or a negative value
function is not supported

5.1.4. TBP_GetVersion

Syntax:

 C++:

int WINAPI TBP_GetVersion(char* ABuf, int ABufSize);
 Object Pascal:
function TBP_GetVersion(ABuf: PChar; ABufSize: Integer): Integer; stdcall;

Description:

This function is called in order to retrieve the version name of the Plug-in. It is encouraged to add any valuable information about the current state of the Plug-in to the version name.
Parameters:
ABuf

[out] Pointer to a string buffer that receives the string specifying the version name of the Plug-in. If ABuf is a null pointer, the function must return value is the required buffer size in bytes.

ABufSize

[in] Size of the string buffer identified by ABuf, in bytes. If the ABufSize is negative, the function must return value is the required buffer size in bytes.
Return values:

A positive value

the number of bytes written in the ABuf or the required buffer size

Zero or a negative value
function is not supported

5.1.5. TBP_GetStatus

Syntax:

 C++:

int WINAPI TBP_GetStatus();
 Object Pascal:
function TBP_GetStatus: Integer; stdcall;
Description:

This function is called to determine whether the Plug-in is functioning properly.

Return values:

0

the Plug-in is functioning properly

Non-zero
error code (will be logged)
5.1.6. TBP_GetInfo

Syntax:

 C++:

int WINAPI TBP_GetInfo(char* ABuf, int ABufSize);
 Object Pascal:
function TBP_GetInfo(ABuf: PChar; ABufSize: Integer): Integer; stdcall;

Description:

This function is called in order to retrieve additional information about the Plug-in. This information will be displayed when a user clicks the “Information” button on the Plug-in configuration page.

Note: If the information text starts with the <HTML> tag, it is displayed as an HTML document.

Parameters:
ABuf

[out] Pointer to a string buffer that receives the string with information about the Plug-in. If ABuf is a null pointer, the function must return value is the required buffer size in bytes.

ABufSize

[in] Size of the string buffer identified by ABuf, in bytes. If the ABufSize is negative, the function must return value is the required buffer size in bytes.
Return values:

A positive value

the number of bytes written in the ABuf or the required buffer size

Zero or a negative value
function is not supported

5.1.7. TBP_NeedConfig

Syntax:

 C++:

int WINAPI TBP_ConfigNeeded();
 Object Pascal:
function TBP_ConfigNeeded: Integer; stdcall;

Description:

This function is called to determine whether the Plug-in can be configured within The Bat! A user can configure Plug-ins by clicking the Configure button at the Plug-in configuration page.

Return values:

0

the Plug-in cannot be configured within The Bat!

Non-zero
the Plug-in can be configured within The Bat!

5.1.8. TBP_Setup

Syntax:

 C++:

int WINAPI TBP_Setup();
 Object Pascal:
function TBP_Setup: Integer; stdcall;
Description:

This function is called for configuring the Plug-in from The Bat! Plug-in configuration page by clicking the Configure button or right after installing the Plug-in. The TBP_Setup can be called by The Bat! only if the TBP_ConfigNeeded returned AVC_OK. The handle of the calling window can be retrieved by the GetActiveWindow Win32 API function.

Return values:

0

the Plug-in was successfully configured
Non-zero
the Plug-in was not configured, possible error code (may be logged in future)

5.1.9. TBP_SetConfigData

Syntax:

 C++:

int WINAPI TBP_SetConfigData(void* ABuf, int ABufSize);
 Object Pascal:
function TBP_SetConfigData (const ABuf; ABufSize: Integer): Integer; stdcall;

Description:

This function is used for passing Plug-in configuration data stored in the Plug-in configuration file.

There are no any special requirements about the configuration data format; it is treated as a binary buffer that may contain any characters.

The TBP_SetConfigData is called when the Plug-in is loaded and initialised at the program’s start-up.

Parameters:
ABuf

[in] Pointer to a buffer that contains Plug-in configuration data.

ABufSize

[in] Size of the buffer identified by ABuf, in bytes.
Return values:

0

function completed successfully

Non-zero
a failure occurred during execution of the function, error code (may be logged in future)
5.1.10. TBP_GetConfigData

Syntax:

 C++:

int WINAPI TBP_GetConfigData(void* ABuf, int ABufSize);
 Object Pascal:
function TBP_GetConfigData (var ABuf; ABufSize: Integer): Integer; stdcall;
Description:

This function is used for retrieving Plug-in configuration data after the Plug-in is configured using the TBP_Setup function in order to store the data in the Plug-in configuration file.

There are no any special requirements about the configuration data format; it is treated as a binary buffer that may contain any characters.

The TBP_GetConfigData is called when the TBP_Setup function returns AVC_OK.

Parameters:
ABuf

[out] Pointer to a binary buffer that receives configuration data from the Plug-in. If ABuf is a null pointer, the function must return value is the required buffer size in bytes.

ABufSize

[in] Size of the string buffer identified by ABuf, in bytes. If the ABufSize is negative, the function must return value is the required buffer size in bytes.
Return values:

A positive value

the number of bytes written in the ABuf or the required buffer size

Zero or a negative value
function is not supported

5.1.11. TBP_NeedCOM

Syntax:

 C++:

int WINAPI TBP_NeedCOM();
 Object Pascal:
function TBP_NeedCOM: Integer; stdcall;
Description:

This function is called to determine whether the Plug-in requires COM subsystem initialisation, i.e. call to CoInitialize must be made before using functions of the Plug-in in a thread.

If the Plug-in implements functions working with the ITBPDataProvider interface, the return value of this function is ignored because it requires COM initialisation anyway.
Return values:

0

the Plug-in does not require COM

Any non-zero value
the Plug-in requires COM
5.2. Anti-spam

This section contains information about Anti-spam functions of Plug-ins.
5.2.1. TBP_GetSpamScore

Syntax:

 C++:
int WINAPI TBP_GetSpamScore(int MsgID, TBPGetDataProc* GetData);
 Object Pascal:
function TBP_GetSpamScore(MsgID: Integer; GetData: TBPGetDataProc): Integer; stdcall;
Description:

This function calculates Spam Score of a message. TBP_GetSpamScore of each Plug-in is called when a message is about to be stored in the message base after it is received and the final score is calculated accordingly to the user settings. TBP_GetSpamScore must return a score out of 100 points assigned to the message by the Plug-in. Zero score means the message is considered as legitimate mail, 100 points means the message is surely spam. If the returned value is negative, The Bat! assumes that the message was not processed by the Plug-in and do not count the Plug-in in calculation of the final score for the given message (e.g. when two plug-ins are installed, if one of the Plug-ins returned -1 and the second one returned 80, the average score will be 80, if both Plug-ins returned -1, the average score is 0)
TBP_GetSpamScore can also be used for any preliminary processing of a message (for example, extracting some data from all incoming mail for storing into a database).
Parameters:
MsgID

[in] the identifier of the message being processed. MsgID passed to the GetData function together with property identifier in order to retrieve required data from the message. This identifier is unique within The Bat! and cannot be reused after exit from TBP_GetSpamScore.
GetData

[in] a pointer to the TBPGetDataProc function which is used for retrieving data from a message
Return values:
0-100

Spam Score (out of 100) assigned to a message by the Plug-in
A negative value
the message was not processed

5.2.1. TBP_FeedSpam

Syntax:

 C++:
int WINAPI TBP_FeedSpam(int MsgID, int IsSpam, TBPGetDataProc* GetData);
 Object Pascal:
function TBP_FeedSpam(MsgID, IsSpam: Integer; GetData: TBPGetDataProc): Integer; stdcall;

Description:

This function may be provided by the Plug-in in order to “educate” the Plug-in about spam and non-spam messages accordingly to the user’s preferences. TBP_FeedSpam is called when a user selects messages and uses the “Mark as Junk” or “Mark as not Junk” command.
Implementation of TBP_FeedSpam is optional and depends on algorithms used for detecting spam.

A plug-in must store collected data separately from its configuration data that can be received by TBP_GetConfigData
Parameters:

MsgID

[in] the identifier of the message being processed. MsgID passed to the GetData function together with property identifier in order to retrieve required data from the message. This identifier is unique within The Bat! and cannot be reused after exit from TBP_FeedSpam.
IsSpam

[in] if IsSpam is not zero, the message is considered as spam, otherwise the message is legitimate
GetData

[in] a pointer to the TBPGetDataProc function which is used for retrieving data from a message
Return values:
0

the Plug-in collected new data from the message
Non-zero
the message was not processed or no new data was collected from it
5.2.3. TBPGetDataProc callback function
Syntax:

 C++:
typedef int (WINAPI *TBPGetDataProc)(int MsgID, int DataID, char* Buf, int BufSize);

 Object Pascal:
TBPGetDataProc = function(MsgID, DataID: Integer; Buf: PChar; BufSize: Integer): Integer; stdcall;

Description:

A TBPGetDataProc callback function is passed as a parameter to TBP_GetSpamScore and

TBP_FeedSpam functions in order to provide access to data of the message being processed.

It is possible to get virtually all data from a message by calling this function without need to parse the “raw” message source.

The data returned by this function may be characterised as text (some parts may be encoded accordingly to various standards, though)

Parameters:

MsgID

[in] the identifier of the message being processed.
DataID

[in] the identifier of message property to be retrieved. See the table of possible property identifiers in p. 5.2.4
Buf

[out] a pointer to the string buffer that receives data of the item identified by DataID; if Buf is a null pointer, TBPGetDataProc returns the required buffer size.
BufSize

[in] size of the string buffer identified by Buf, in bytes; if BufSize is negative, TBPGetDataProc returns the required buffer size.

Return values:
0 or a positive value
the number of bytes written in the buffer identified by Buf or the requires buffer size

Negative value
the function failed or the item identified by DataID does not exist

5.2.4. Message Property Identifiers

The table below describes currently defined message property identifiers

	Name
	Value
	Used for retrieving…

	 mpidMessageHeader
	100000
	RFC 822 message header

	 mpidMessageBody
	100001
	Decoded message text converted into Windows local code page

	 mpidMessageAttachments
	100002
	List of attachments separated by null character. The end of the list is determined by double null character

	 mpidMessageSender
	100003
	Decoded list of senders converted into Windows local code page

	 mpidMessageSubject
	100004
	Decoded message subject converted into Windows local code page

	 mpidRawMessage
	100005
	The entire message source without any conversion made. This may be useful if the Plug-in parses messages by itself

Other identifiers that can be used by the Plug-in (with self-descriptive names and values) are:

 midxSubject 1

 midxDate 2

 midxComment 3

 midxInReplyTo 4

 midxMessageID 5

 midxNewsgroups 6

 midxMailer 7

 midxContentType 8

 midxContentSubType 9

 midxExpireDate 10

 midxOrganization 11

 midxContentID 12

 midxContentMD5 13

 midxPriority 14

 midxImportance 15

 midxContentLocation 16

 midxEncoding 17

 midxCharset 18

 midxBoundary 19

 midxMsgEncoding 20

 midxC_Name 21

 midxCD_Name 22

 midxReportType 23

 midxReferences 24

 midxC_Description 25

 midxContentDisposition 26

 midxContentLanguage 27

 midxC_ID 29

 midxC_AccessType 30

 midxC_Expiration 31

 midxC_Size 32

 midxC_Permission 33

 midxC_Site 34

 midxC_Directory 35

 midxC_Mode 36

 midxC_Server 37

 midxC_Subject 38

 midx_Files 39

 midx_Msgs 40

 midxReturnPath 41

 midxFromName 42

 midxFromAddr 43

 midxReplyName 44

 midxReplyAddr 45

 midxToName 46

 midxToAddr 47

 midxServerID 48

 midxRRC 49

 midxRRQ 50

 midxFileSubst 51

 midxC_Number 52

 midxC_Total 53

 midxXCFile 54

 midxMDN_To 55

 midxMDN_Options 56

 midxRefList 57

 midxC_MICAlg 58

 midxC_SMIMEType 59

 midxC_Protocol 60

 midxC_ProtocolType 61

 midxC_ProtocolSubType 62

 midxMatter 63

 midxListHelp 64

 midxListUnsub 65

 midxListSub 66

 midxListPost 67

 midxListOwner 68

 midxListArchive 69

 midxDecodedFrom 70

 midxDecodedTo 71

 midxDecodedSubj 72

 midxDecodedToEtc 73

 midxFrom 74

 midxTo 75

 midxCC 76

 midxBCC 77

 midxReplyTo 78

 midxSender 79

 midxXSender 80

Note: “midxC_” identifiers are used for retrieving values of corresponding Content-Type parameters
5.3. Custom macros

This sections describes functions for adding new macros to the existing set of template macros (see The Bat! Help to find out the list of built-in macros)
5.3.1. TBP_GetMacroList

Syntax:

 C++:

int WINAPI TBP_GetMacroList(char* ABuf, int ABufSize);
 Object Pascal:
function TBP_GetMacroList(ABuf: PChar; ABufSize: Integer): Integer; stdcall;
Description:

This function is called in order to retrieve the CR LF – separated list of macros implemented in the Plug-in. This list is used by The Bat! Template Processor to find the plug-in that implements an unknown macro. Note that Plug-ins cannot overwrite any of built-in macros, so before giving macro a name, the implementer should make sure the names of new macros do not conflict with existing ones.
Name of macro may contain any number of characters; the set of allowed characters is restricted to Latin letters and decimal digits. Macro names are case insensitive.

Parameters:
ABuf

[out] Pointer to a string buffer that receives the string containing list of macros implemented by the Plug-in separated by CR LF pair. If ABuf is a null pointer, the function must return value is the required buffer size in bytes.

ABufSize

[in] Size of the string buffer identified by ABuf, in bytes. If the ABufSize is negative, the function must return value is the required buffer size in bytes.
Return values:

A positive value

the number of bytes written in the ABuf or the required buffer size

Zero or a negative value
function is not supported

5.3.2. TBP_ExecMacro

Syntax:

 C++:
int WINAPI TBP_ExecMacro(char* AMacro, int MaxLen, ITBPDataProvider* Template, ITBPDataProvider* Params): Integer; stdcall;

 Object Pascal:
function TBP_ExecMacro(AMacro: PChar; MaxLen: Integer; Template, Params: ITBPDataProvider): Integer; stdcall;

Description:

This function is called each time the Template Processor executes a macro listed by the Plug-in. The Plug-in should execute the macro accordingly to its rules and return either the index in the Template object where the replacing text should be taken from or negative value if macro is replaced by empty string.
Parameters:
AMacro

[in] Pointer to a string buffer that contains the null-terminated string specifying the name of the macro to be executed.

MaxLen

[in] Maximum length of the macro name located in AMacro.

Template

[in] Pointer to the Template Processor object; p. 5.3.3 specifies the list of property identifiers that could be used for setting and retrieving information. The Template::ExecuteMacro method can be used for execution of simple templates (this is especially useful for retrieving information from the address book using %ABnnnPPP macros, use of regular expression macros, setting custom message header fields), the OutData object is used for passing back the result of template execution, the data index of the result is 0.
Params

[in] Pointer to the parameter list object. The Params.ItemCount method returns the number of parameters passed to the macro. To retrieve parameters, use call to Params.GetDataByID(Index,…), where Index specifies the zero-based index of a parameter. Note that parameters passed to the macro are templates themselves, they are executed once when and only if they are retrieved by using the Params.GetDataByID method.
Return values:

0 or positive value
The index in the Template object where the resulting string should be taken from
Negative value

Macro was executed but in should be replaced by empty string
5.3.3. Template object index
Below is the list of indexes that can be used for setting and retrieving information of a Template object passed to TBP_ExecMacro . Index names are considered as self-explanatory.
String indexes (string data can be accessed by ITBPDataProvider::GetDataByID and ITBPDataProvider::SetDataByID):

 tpxQuotePrefix 200 // Current quotation prefix as it appears in text
 tpxCharset 211

 tpxAccount 214

 tpxFrom 215

 tpxReplyTo 216

 tpxReturnPath 217

 tpxTo 218

 tpxCC 219

 tpxBCC 220

 tpxOrg 221

 tpxSubject 222

 tpxFullSubject 223

 tpxComment 224

 tpxOldTo 225

 tpxOldFrom 226

 tpxOldReplyTo 227

 tpxOldCC 228

 tpxOldBCC 229

 tpxOldSubject 230

 tpxOldComment 231

 tpxMatter 232

 tpxOldMatter 233

 tpxMsgID 234

 tpxOldMsgID 235

 tpxOldDate 236

 tpxOldRcvDate 237

 tpxOldReturn 238

 tpxOldOrg 239

 tpxOldText 240

 tpxText 241
// Text of original message (selected part when initiated by “Reply quoting selected text” command)
 tpxHeaders 243

 tpxAttachments 244

 tpxOldAttachments 245

 tpxOldCharset 247

 tpxTracking 248
// Message tracking number
 tpxQuoteStyle 249
// Defined quotation style, empty string
 tpxRegExpPattern 251

 tpxRegExpText 252

 tpxFullText 254
// Full text of original message
 tpxLastAddress 257

 tpxCursorHeader 261
Integer and Boolean indexes (string data can be accessed by ITBPDataProvider::GetIntValue and ITBPDataProvider::SetIntValue). For Boolean data, 0 value mean False, any non-zero integer means True.
	Index
	ID
	Type
	Meaning

	 tpxWrapJustify
	201

	Boolean
	If True, all subsequent calls to the %Wrapped macro will produce wrapped text aligned by both left and right edges

	 tpxClear
	202
	Boolean
	If True, the text produced by calling template will completely replace the text in the message editor

	 tpxIsSignature
	203
	Boolean
	If True, the text produced by calling template will replace the current signature in the message editor

	 tpxSignComplete
	204
	Integer
	< 0
Do not sign message on completion

0
Use default signing settings

> 0
Sign message on completion

	 tpxEncryptComplete
	205
	Integer
	< 0
Do not encrypt message on completion

0
Use default settings

> 0
Encrypt message on completion

	 tpxUseSMIME
	206
	Integer
	< 0
Do not to use S/MIME

0
Use default settings

> 0
Use S/MIME

	 tpxUsePGP
	207
	Integer
	< 0
Do not to use OpenPGP

0
Use default settings

> 0
Use OpenPGP

	 tpxRCR
	208
	Integer
	< 0
Do not request Reading Confirmation

0
Use default settings

> 0
Request Reading Confirmation

	 tpxRRQ
	209
	Integer
	< 0
Do not request Reading Confirmation

0
Use default settings

> 0
Request Reading Confirmation

	 tpxSplit
	210
	Integer
	< 0
Do not split large message

0
Use default settings

> 0
Split large message

	 tpxPriority
	212
	Integer
	< 0
Message priority is Low

0
Message priority is Normal
> 0
Message priority is High

	 tpxTotalPages
	248
	Integer
	(Printing header/footer only) Total number of pages

	 tpxCurrentPage
	249
	Integer
	(Printing header/footer only) The current page number

	 tpxFullTextDifferent
	259
	Boolean
	True if data items identified by tpxText and tpxFullText are different, false otherwise.

	 tpxCursorBody

	260

	Integer

	1 – cursor should be positioned in message body
100 – cursor was positioned, but not in body

Note about using ITBPDataProvider::SetDataByID: try to use ITBPDataProvider::ExecuteMacro method for setting standard template properties wherever it is possible.
6. ITBPDataProvider – the universal interface for data exchange

ITBPDataProvider is the universal interface for exchanging data and commands between The Bat! and Plug-ins. This interface is supported by all The Bat! objects that are or will be accessible by a Plug-in to maintain simplicity (and thus reliability) of communication with Plug-ins.

Syntax:

C++:

 interface DECLSPEC_UUID("9DD91B89-A551-4180-8A81-2CCF584CD4BF") ITBPDataProvider : public IUnknown
{

 virtual int WINAPI GetDataByID(int ID, char* ABuf, int ABufSize) = 0;
 virtual int WINAPI SetDataByID(int ID, char* ABuf, int ABufSize) = 0;

 virtual int WINAPI GetIntValue(int ID) = 0;

 virtual int WINAPI SetIntValue(int ID, int Value) = 0;

 virtual int WINAPI GetIDType(int ID) = 0;

 virtual int WINAPI ItemCount() = 0;

 virtual HRESULT WINAPI ExecuteMacro(char* AMacro, int MaxLen, ITBPDataProvider* InData, ITBPDataProvider* OutData) = 0;

}
Object Pascal:

 ITBPDataProvider = interface ['{9DD91B89-A551-4180-8A81-2CCF584CD4BF}']

 function GetDataByID(ID: Integer; ABuf: PChar; ABufSize: Integer): Integer; stdcall;

 function SetDataByID(ID: Integer; ABuf: PChar; ABufSize: Integer): Integer; stdcall;

 function GetIntValue(ID: Integer): Integer; stdcall;

 function SetIntValue(ID, Value: Integer): Integer; stdcall;

 function GetIDType(ID: Integer): Integer; stdcall;

 function ItemCount: Integer; stdcall;

 function ExecuteMacro(AMacro: Pointer; MaxLen: Integer; InData, OutData: ITBPDataProvider): HResult; stdcall;

 end;

6.1. ITBPDataProvider::GetDataByID
Syntax:

C++:
virtual int WINAPI GetDataByID(int ID, char* ABuf, int ABufSize);
Object Pascal: function GetDataByID(ID: Integer; ABuf: PChar; ABufSize: Integer): Integer; stdcall;
Description:

This function is used for retrieving text data from the object. Each object’s readable property should be available at least for reading by using this function. Format of data being received is determined by the type returned by the GetIDType method and described in p. 6.5
Parameters:

ID
[in] Identifier of the property to be retrieved.

ABuf

[out] Pointer to a string buffer that receives property data. If ABuf is a null pointer, the function must return value is the required buffer size in bytes.

ABufSize

[in] Size of the string buffer identified by ABuf, in bytes. If the ABufSize is negative, the function must return value is the required buffer size in bytes.
Return values:

Zero or a positive value

the number of bytes written in the ABuf or the required buffer size

A negative value

function is not supported

6.2. ITBPDataProvider::SetDataByID
Syntax:

C++:
virtual int WINAPI SetDataByID(int ID, char* ABuf, int ABufSize);

Object Pascal:
function SetDataByID(ID: Integer; ABuf: PChar; ABufSize: Integer): Integer; stdcall;

Description:

This function is used for assigning data to object properties. . Format of data that could be stored into the property is determined by the type returned by the GetIDType method.
Note: some objects many provide read-only access to their properties.
Parameters:

ID
[in] Identifier of the property to be changed.

ABuf

[in] Pointer to a memory buffer that contains property data.

ABufSize

[in] Size of the memory buffer identified by ABuf, in bytes.

Return values:

Zero or a positive value
the number of bytes written into the target property

A negative value

function is not supported

6.3. ITBPDataProvider::GetIntValue
Syntax:

C++:
virtual int WINAPI GetIntValue(int ID);

Object Pascal:
function GetIntValue(ID: Integer): Integer; stdcall;

Description:

This function returns integer value of a property. Even when a property is not numeric, it is encouraged that implementations tried to convert stored data into numeric format. For example if a string property is ‘1001’, the result of GetIntValue with the ID if this property should be 1001. Boolean data should be converted into integer values accordingly to common conventions (0 means False, non-zero value means True)
Parameters:

ID
[in] Identifier of the property to be retrieved.

Return values:

The function must always return the value corresponding to the property ID. For non-existing properties, zero (0) must be returned
6.4. ITBPDataProvider::SetIntValue

Syntax:

C++:
virtual int WINAPI SetIntValue(int ID, int Value);

Object Pascal:
function SetIntValue(ID, Value: Integer): Integer; stdcall;

Description:

This function should be used for assigning 32-bit integer values wit the object’s property.
Note: some objects many provide read-only access to their properties.
Parameters:
ID
[in] Identifier of the property to be changed.

Value
[in] 32-bit integer value to be assigned to the property.

Return values:

0

The integer data was assigned successfully.

Any other
Object cannot change the property with provided ID.
6.5. ITBPDataProvider::GetIDType
Syntax:

C++:
virtual int WINAPI GetIDType(int ID);

Object Pascal:
function GetIDType(ID: Integer): Integer; stdcall;

Description:

This function returns type identifier of the property specified by ID;
Parameters:

ID
[in] Identifier of the target property

Return values:

Property type identifier

Below is the list of currently defined type identifiers:

	Name
	Value
	Description
	GetDataByID / SetDataByID Conversion

	dtcChar
	0
	String data
	As is

	dtcInt
	1
	32-bit integer
	Text representation of the number

	dtcInt64
	2
	64-bit integer
	Text representation of the number

	dtcWChar
	3
	UNICODE text
	Text converted in the local code page

	dtcBool
	5
	Boolean
	‘0’ for False, ‘1’ for True

	dtcBinary
	6
	Binary data
	Base64-encoded text

	dtcFloat
	7
	Float value
	Text representation of the number

Negative value
Property is not defined yet

6.6. ITBPDataProvider::ItemCount
Syntax:

C++:
virtual int WINAPI ItemCount();

Object Pascal:
function ItemCount: Integer; stdcall;

Description:

This function returns the number of stored properties for numbered list objects (such as Params in TBP_ExecMacro)
Parameters:

None
Return values:

The number of counted properties.
6.7. ITBPDataProvider::ExecuteMacro

Syntax:

C++:
virtual HRESULT WINAPI ExecuteMacro(char* AMacro, int MaxLen, ITBPDataProvider* InData, ITBPDataProvider* OutData);

Object Pascal:
function ExecuteMacro(AMacro: PChar; MaxLen: Integer; InData, OutData: ITBPDataProvider): HResult; stdcall;

Description:

This function is designed to give extra access to facilities provided by an object. Each object that implements the ITBPDataProvider interface may have its own set of macros that is documented for that particular object.

Below is the list of objects with documented behaviour of ExecuteMacro method:

	Object
	Where documented

	Template Processor objects
	p.5.3.2

Parameters:

AMacro

[in] Pointer to a string buffer that contains the null-terminated string specifying the text of the macro to be executed.

MaxLen

[in] Maximum length of the macro text located in AMacro.

InData
[in] Pointer to the ITBPDataProvider object containing input data for macro execution, if required. Property indexes and meaning are to be documented for each implementation. For most cases, InData is a numbered list of parameters.

OutData
[out] Pointer to the ITBPDataProvider object containing output data of macro execution, if required. Property indexes and meaning are to be documented for each implementation.

For most cases, Property with zero index contains the result of execution of the Macro.
Return values:

To be documented for each implementation
